도플러 효과를 이용한 마이크로파 센서의 구현

김태진* · 이영철* · 김선효**

Implementation of a Microwave Doppler Sensor

Tae-jin Kim* · Young-chul Rhee* · Sun-hyo Kim**

요 약

본 논문에서는 10.525GHz에서 동작하는 마이크로파 도플러 레이더 센서를 설계/제작하였다. 움직이는 물 체를 이용한 측정을 통해 도플러 효과에 따른 센서의 특성을 연구 분석하였으며, 측정 결과를 통해 물체의 속도와 물체와 센서 사이의 거리에 따라 특성에 주파수의 차이를 보임을 알 수 있었다. 측정된 결과를 이용 해 마이크로파 도플러 레이더 센서의 FMCW 신호에 의하여 댁내 보안탐지와 같은 용도로 활용할 수 있다.

ABSTRACT

In this paper, Microwave doppler radar sensor operated in 10.525GHz is designed by dielectric resonant oscillator. According to doppler effects, a characteristic of Microwave sensor with FMCW was analyzed. The qualities of objects velocity and distance between object and microwave sensor by sensor output frequency difference was measured. As a result of Microwave doppler radar sensor, the prototype sensor is available for indoor burglar alarms and other application through FMCW signal.

키워드

Microwave, FMCW, Doppler, Radar Sensor

ㅣ. 서 론

최근 RF 기술과 통신기술이 발전함에 따라 저렴하 면서도 소형화된 무선통신기기들을 사용할 수 있게 되었다. 이로 인해 공학, 의학을 비롯한 많은 분야에 다양하게 이용되고 있다.

노인인구와 천식, 당뇨병, 그리고 심장병과 같은 만 성질환을 앓고 있는 인구의 비율이 증가함에 따라, 가 정건강관리[1][2]와 원격진료[3][4]는 점차적으로 중요 해져만 가고 있다. 심장과 호흡의 속도와 고른 정도는 이 같은 감시에 대한 매우 유용한 매개변수이다.

심장과 호흡의 속도와 생명징후의 원격 비침습성

*	경남대학교	정보	통신	공학과
	접수잌자 :	2009	03	26

검출은 마이크로파 도플러 레이더 센서를 사용하여 가능하다. 호흡과 혈액순환의 수축과 팽창에 의해 야 기된 몸의 움직임은 물체를 노출시키는 마이크로파 신호로 도플러 천이를 일으킨다. 그 결과 몸체로부터 반사된 신호는 이 같은 움직임에 대한 정보를 포함하 며, 이 정보는 간단하고 비싸지 않은 하드웨어와 소프 트웨어 컴포넌트들을 사용하여 쉽게 추출되어질 수 있다. 어떠한 센서도 환자의 몸에 직접적으로 요구되 지 않으며, 레이더 센서의 사용을 위해 오직 최소한의 교육만이 필요하기 때문에, 가정건강관리와 원결진료 에 이용하기에 매우 매력적이다. 또한 환자와의 직접 적인 접촉이 불가능한 곳의 경우, 예를 들어 환자가

[™] 한국폴리텍₩대학 전자과 심사완료일자 : 2009. 04. 28 심한 화상을 입었을 경우, 그리고 수색/구조 작업과 같이 접촉이 불가능할 경우 특히 유용할 것이다.

도플러 레이더 센서의 응용은 1975년에는 호흡수 [5]를 1979년에는 맥박수[6]를 처음으로 측정하였다. 이 당시에는 X-대역 도파관 도플러 송수신기를 이용 하였다. 이와 유사한 많은 송수신기를 이용하여 지속 적으로 이 같은 시스템이 개발되어 왔고, 생명검출시 스템[7]과 공군조종사를 위한 천측두동맥 감시 시스템 등의 많은 장치들이 개발되었다. 이 당시에 사용된 소 자들은 부피가 크고, 값비싼 상용화된 소자들이 사용 되었다. 최근에는 RF기술과 하드웨어 설계기술의 발 달로 저렴하면서도 소형화된 소자들이 사용되고 있다.

본 논문에서 10.525GHz의 X-대역에서 동작하는 마 이크로파 도플러 레이더 센서를 설계하였다. 0.6mm Epoxy Glass 기판(FR4)과 플라스틱 패키지소자(SOT-23)의 사용으로 크기의 최적화를 이루고 동시에 높은 신뢰도와 경제성을가지는 우수한 성능의 회로를 구현 하였다. 이 회로는 단일 양전압($V_{cc} = 5 V \pm 0.5 V$)이 바 이어스로 인가된다. 동작온도는 -25℃~60℃이내이고, 주파수 흐름은 전체 온도범위에 걸쳐 1dB이하의 출력 전력변화를 가지는 10MHz이하 특성을 보였다.

II. 마이크로파 도플러 레이더 센서

2.1 도플러 레이더 센서의 원리

움직임을 감지하는 시스템의 기본동작 원리는 아주 간단하다. 마이크로파 신호가 움직이는 물체에 반사될 때, 도플러 효과로 인해 신호의 주파수가 물체의 속도 에 비례하여 변화된다. 일정한 주기를 갖고 움직이는 물체로부터 반사된 신호의 주파수는 동일하게 유지되 나 위상이 시간에 따라 변화한다. 부하를 갖는 전송선 로의 위상변화는 그림1에 나타내었는데, 시간에 따라 변화되는 위상은 변위 x(t)에 비례한다.

$$\begin{aligned} f' &= \frac{f_0}{1 - \frac{v}{c} \cos\theta} \approx f_0 \left(1 + \frac{v}{c} \cos\theta\right) \\ &= f_0 + f_0 \frac{v}{c} \cos\theta = f_0 + \frac{v}{\lambda} \cos\theta \end{aligned} \tag{1}$$

$$2\pi t \cdot f' = 2\pi t \left(f_0 + \frac{v}{\lambda} \cos \theta \right)$$
$$= 2\pi f_0 t + \frac{2\pi}{\lambda} \cdot (v \cdot \cos \theta) t$$
$$= 2\pi f_0 t + \frac{2\pi}{\lambda} \cdot 2x(t)$$
$$= 2\pi f_0 t + \frac{4\pi}{\lambda} \cdot x(t)$$
$$= 2\pi f_0 t + \Delta \phi(t)$$
(2)

여기서, f_0 는 입력신호의 주파수, v는 움직이는 물 체의 속도, c는 광속도, f'는 주파수 변화량, λ 는 입 력신호의 파장, x(t)는 물체의 변위이다.

변위의 크기가 파장의 크기에 비해 적을 때, 위상 변화는 적다. 그리고 위상 변조된 신호는 원래 신호와 합치는 믹서에 의해 복조된다. 그러면 복조신호는 물 체의 변위에 비례하게 된다.

그림 1. 물체의 움직임이 일정한 주기를 가지고 변화되었을 때 도플러 효과 Fig. 1 Doppler effect with a periodic motion

2.2 도플러 레이더 센서 시스템

도플러 이론에 따르면, 주기적으로 변화되는 변위 를 가지고 움직이는 물체에 대해 주파수는 일정하나 위상 $\phi(t)$ 는 시간에 따라 변화된다. 이것을 수식으로 표현하면 식 (3)과 같다.

$$sin\left(2\pi f_0 t + \frac{4\pi}{\lambda} \cdot x(t)\right) \cdot sin\left(\frac{\pi}{2} + 2\pi f_0\right)$$

$$= sin\left(2\pi f_0 t + \frac{4\pi}{\lambda} \cdot x(t)\right) \cdot \cos\left(2\pi f_0\right)$$

$$= \frac{1}{2}\left[sin\left(4\pi f_0 + \frac{4\pi}{\lambda} \cdot x(t)\right) + sin\left(\frac{4\pi}{\lambda} \cdot x(t)\right)\right]$$

$$= sin\left(\frac{4\pi}{\lambda} \cdot x(t)\right)$$

$$\approx \frac{4\pi}{\lambda} \cdot x(t) \qquad (If, \frac{4\pi}{\lambda} \cdot x(t) \ll 1)$$

$$= \phi(t)$$

$$\therefore \phi(t) = \frac{4\pi}{\lambda} \cdot x(t) \qquad (3)$$

여기서, λ는 신호의 파장이다. 물체로부터 반사된 신호는 위상변조가 되어있다. 이 물체의 변위 변화 크 기가 신호 파장의 트기에 비해 적으면, 위상 변화는 적을 것이다. 그리고 PM신호는 믹서에 의해 복조될 것이고 변조 신호의 위상은 물체의 변위에 비례하게 될 것이다. 도플러 이론에 기반으로 개발된 마이크로 파 도플러 레이더 센서는 마이크로파 신호가 움직이 는 물체에 부딪히면, 이 신호의 주파수는 도플러 효과 에 의해 주파수 변화가 발생하게 된다. 만약, 물체의 움직임이 주기적이라면, 물체의 움직임에 따라 마이크 로파 신호의 위상변화가 있게 된다. 위상변화는 물체 의 변위에 비례하여 변화된다. 이 위상 변조된 신호를 검출하려면 그림2와 같이 간단한 송수신기에 의해서 신호가 검출된다. 되돌아오는 신호는 전송신호의 샘플 과 믹서에서 합쳐지게 되는데, 그 이유는 물체로 보내 는 신호와 물체로부터 되돌아오는 신호 간의 위상변 화의 크기를 그에 비례하는 출력전압으로 나타내기 위해서이다. 이 때, 신호는 두 개의 2-패치 안테나를 이용하여 송신신호와 수신신호를 분리시킨다. 송신신 호인 국부발진기의 일부분을 이용하여 수신된 신호는 기저대역으로 하향 변환된다. 조그마한 변위에 대해 이 기저대역 신호의 주파수는 물체의 주기적인 변위 에 직접 비례하여 변화되며, 국부발진기의 위상잡음이 이 시스템의 감도를 떨어뜨리는 원인 중 하나가 된다. 기저대역 신호의 크기가 RF입력신호의 위상에 비례하 게 되므로, RF신호의 위상잡음이 출력신호의 잡음의 크기를 증가시키게 된다. 그러나 송신신호를 발생시키 는 발진기나 국부발진기가 같은 것이므로, 수신신호와 국부발진기 신호의 위상잡음 사이에는 상관관계가 존 재하게 된다. 그리고 시간지연에 관계있는 상관관계 레벨은 물체의 크기와 주파수 차이에 의해 변화된다.

Ⅲ. 시스템 설계 및 측정

3.1 X-band 유전체 공진 발진기(DRO) 설계

본 논문에서는 게이트 바이어스 전압제어 방식의 유전체 공진 발진기를 설계하였다. 본 논문에서 이용 한 게이트 바이어스 전압제어 방식은 직렬형 유전체 공진 발진기의 형태를 기본으로 하고, 주파수 동조를 유전체 공진기를 이용하는 것이 아니라, 능동소자의 동작점을 조정하는 방식이다. 바이어스 동작점을 이용 하여 우수한 위상잡음을 가지는 X-대역 게이트 전압 제어 유전체 공진 발진기를 설계하였으며, 그 방식은 일반적으로 사용되어지는 방식인 바렉터 다이오드를 이용한 전압제어방식과 달리 능동소자의 게이트 바이 어스 전압튜닝 방식을 이용하였다. 설계된 유전체 공 진 발진기는 마이크로파 도플러 레이더 센서의 상용 주파수인 10.525GHz에 맞추어 설계하였다. 유전율이 3.6인 FR-4기판을 사용하였고, NEC사의 NE3210S01 소자를 사용하여 설계하였다. 그림 3과 4는 ADS툴을 사용하여 설계한 유전체 공진기와 유전체 공진기의 시뮬레이션 특성을 보여준다. 소자의 바이어스 동작점 은 비선형 해석을 통해 Vds=2V, Vgs=-0.52V, Ids=10mA로 선정하였다. 설계한 유전체 공진기와 비 선형 해석된 NE3210S01소자를 이용하여 ADS툴에서 유전체 공진 발진기를 설계하였으며, 이는 그림 5에 나타내었다. 유전체 공진 발진기의 시뮬레이션 결과는 그림 6에 나타나 있다.

그림 3. 유전체 공진기 설계회로 Fig. 3 Dielectric Resonator schematic

그림 4. 유전체 공진기의 시뮬레이션 결과 Fig. 4 Result of Dielectric Resonator simulation

그림 5. 발진기 설계회로 Fig. 5 Oscillator schematic

그림 6. 발진기 시뮬레이션 결과 Fig. 6 Result of Oscillator simulation

3.2 X-band 주파수 믹서 및 안테나 설계

믹서는 서로 격리된 두 개의 포트에 연결된 단일 칩 위에 두 개의 쇼트키 다이오드를 가지는 상용 SOT-23패키지 쇼트키 다이오드를 사용하여 구현되었 다[8]. 그림7은 믹서의 레이아웃을 나타내고 있다. 레 이아웃에서 보여진 바와 같이 송신신호와 수신신호가 서로 반대방향으로 입력됨을 알 수 있다, 이를 위해 역방향 직렬 쌍 형태의 내부구조를 가진 SOT-23 패 키지 쇼트키 다이오드를 사용하였다. 안테나는 앞서 언급한 바를 토대로 FR-4기판을 사용하여 2개의 2-패치 마이크로스트립 안테나를 설계하였다. 안테나의 반사손실을 시뮬레이션한 결과는 그림 8(a)와 그림 8(b)에 나타내었다.

그림 7. 믹서 레이아웃 Fig. 7 Mixer layout

3.3 시스템 측정

제작된 마이크로파 도플러 센서의 시스템 특성 측 정은 센서의 위치를 고정시킨 후 사람이 직접 움직이 는 물체가 되어 측정하였다. 측정은 일정한 거리에서 움직이는 물체의 속도에 따른 출력과 센서 쪽을 향해 직선방향으로 움직일 때, 즉 물체와 센서 사이에 거리 변화가 있을 경우의 출력을 측정하였다. 거리변화는 1m와 2m를 기준으로 하였다. 그림 10은 발진기의 발 진주파수를 측정한 데이터이다. 10.525 GHz에서 3.67 dBm의 송신신호를 출력한다.

그림 11은 1m 거리에서 느린 속도로 움직일 때의 추력신호를 나타내고 있으며, 그림 12는 빠르게 움직 일 때의 출력신호를 나타내고 있다. 일정한 거리에서 움직이는 물체의 속도에 따른 차이는 육안으로도 구 별이 가능할 정도로 확연한 차이를 보인다. 느리게 움 직일 때는 출력신호의 주기가 상대적으로 크고, 빠르 게 움직일 때는 그 주기가 줄어든다. 그림 13은 일정 한 속도로 움직이면서 센서와의 거리를 변화시켰을 때의 출력신호이다. 센서와 가까워질수록 신호의 주기 가 짧아지고, 멀어지면 주기가 커진다. 즉, 가까울수록 주파수가 커진다는 것을 의미한다.

Fig. 10 Oscillator output signal

그림 11. 1m거리에서 느린 속도로 움직일 때 Fig. 11 Output signal for slow movement in 1 meter

그림 12. 1m거리에서 빠른 속도로 움직일 때 Fig. 12 Output signal for fast movement in 1 meter

그림 13. 거리가 변화할 때 Fig. 13 Output signal for distance

Ⅳ.결론

본 논문에서는 10.525GHz대에서 동작하는 마이크 로파 도플러 레이더 센서를 제작하고 분석하였다. 센 서의 안정적인 설계를 위해 발진기의 위상잡음을 고 려하여 유전체 공진기를 이용한 발진기를 설계하였다. 그리고 실제 마이크로파 도플러 레이더 센서의 응용 을 고려하여 실질적으로 요구되는 25cm2에 맞추어 제 작하였다. 그리고 IF 출력신호가 미세하기 때문에 신 호 검출을 위해 IF출력단에 OP-Amp.를 이용하여 출 력신호를 증폭시켰다. 발진기의 출력은 10.525GHz에 서 3.67dBm을 나타내었다. 상용화된 MMIC와 마이크 로스트립 패치안테나를 이용하여 경량 소형화가 가능 하였다. 제작된 센서는 움직이는 물체를 이용한 측정 에서도 움직이는 물체의 움직임에 대한 정보를 이용 할 수 있을 정도의 신호 검출이 가능함을 알 수 있었 다. 이러한 특성을 이용하면 노령화와 만성질환 환자 의 증가로 주목받고 있는 원격진료나 댁내 모니터링 과 같은 의료사업에 적용할 수 있고, 또한 댁내 침입 감지와 같은 시스템에 모션센서로서 이용이 가능하다.

참고 문헌

- J. bai, Y. Zhang, D. Shen, L. Wen, C. Ding, Z. Cui, F. Tian, B. Yu, B.Dai and J. Zhang, "A portable ECG and blood pressure telemonitoring system", IEEE Engineering in Medicine and Biology, Vol. 18, No. 4, pp.63-70, 1999.
- [2] V. M. Lubecke, O. Boric-Lubecke, G. Awater, P. W. Ong, P. L. Gammel, R. H. Yan, and J. C. Lin, "Remote Sensing of vital signs with telecommunications signals", World Congress on Medical Physics and Biomedical Engineering, Cicago II, July 2000.
- [3] J. Lin, "Applying telecommunication technology to health-care delivery", IEEE Engineering in Medicine and Biology, Vol. 18, No. 4, pp.28-31, 1999.
- [4] K. Simizu, "Telemedicine by mobile communication", IEEE Engineering in Medicine and Biology, Vol. 18, No. 4, pp.32-44, 1999.
- [5] J. C. Lin, "Non-invasive microwave measurement of respiration", Proc. of IEEE, Vol. 63, pp.1530, 1979.

- [6] J. C. Lin, J. Kiernicki, M. Kiernich, P. B. Wollschaeger, "Microwave apexcardiography", IEEE Tran. Microwave Theory and Technique, Vol. 27, pp.618-620, 1979.
- [7] K. M. Chen, D. Misra, H. Wang, H. R. Chuang and E. postow, "An X band microwave life-detection system", IEEE Trans. On Biomedical Engineering, Vol. 33, pp.697-701, 1986.
- [8] C. Y. Pon, "Hybrid ring directional coupler for arbitrary power division", IEEE Trans. Microwave Theory Tech., Vol. MTT-9, pp. 529-535, Nov. 1961.

저자 소개

2007년02월 : 경남대학교 정보 투시곳학과 족억(곳학사)

김태진(Tae-jin Kim)

통신공학과 졸업(공학사) 2007년03월 : 경남대학교 대학 원 정보통신 공학과(석사과정)

※ 관심분야 : 마이크로파 능동소자 응용, RFIC설계

이영철(Young-chul Rhee)

1981년 ~ 현재 : 경남대학교 공과 대학 정보통신공학과 교수

김선효(Sun-hyo Kim)

1988년 ~ 1993년 : 삼성전자(주)

- 1993년 ~ 1995년 : 부일이동통신(주)
- 1995년 ~ 현재 : 한국폴리텍Ⅲ창원대학 전자과 교수